Computer Networks I

Physical Layer

Prof. Dr.-Ing. Lars Wolf

IBR, TU Braunschweig Mühlenpfordtstr. 23, D-38106 Braunschweig, Germany, Email: wolf@ibr.cs.tu-bs.de

	Complementary Courses: Multimedia Systems, Distributed Systems, Mobile Communications, Security, Web, Mobile+UbiComp, QoS											
	Applications	ssing	P2P	Email	Files	Telnet	Meb	IP-Tel: Signal. H.323 SIP			Media Data Flow	
L5	Application Layer (Anwendung)										RT(C)P	
L4	Transport Layer (Transport)	& Addre	Internet: TCP, UDP						Communications	specific	Transport	ecurity
L3	Network Layer (Vermittlung)	Transitions	Internet: IP					Moblie IP	mmun	- QoS	Network	Sec
L2	Data Link Layer (Sicherung)	Trans	Н	igh-S	N, M. Speed WAN	d LAI	-		Mobile Co	MMCOM		
L1	Physical Layer (Bitübertragung)		Other Lectures of "ET/IT" & Computer Science									
	Introduction											

Overview

- 1 Basics
 - 1.1 Characteristics
 - 1.2 Bit Rate and Baud Rate
 - 1.3 Operating Modes
- 2 Analog and Digital Information Encoding and Transmission
- 3 Multiplexing Techniques

1 Basics

- Characteristics
- Bit Rate and Baud Rate
- Operating Modes

1.1 Characteristics

ISO DEFINITION: the physical layer provides the

- mechanical,
- electrical,
- functional and
- procedural

FEATURES

to initiate, maintain and terminate physical CONNECTIONS BETWEEN

- Data Terminal Equipment (DTE) and
- Data Circuit Terminating Equipment (DCE, "postal socket")
- and/or data switching centers.

Using physical connections, the physical layer ensures the transfer of a TRANSPARENT BITSTREAM between DATA LINK LAYER-ENTITIES.

A PHYSICAL CONNECTION may permit either

- the duplex or
- the semi-duplex

transfer of a bitstream

Physical Layer

DTE (Data Terminal Equipment = end-system)
DCE (Data Circuit-Terminating Equipment)
•modem, multiplexer, Digital Service Unit

Phyiscal layer deals with interfaces between

- DTE and DCE and
- **•DCE** and DCE

Characteristics

MECHANICAL: size of plugs, allocation of pins, etc.

- e. g. ISO 4903:
- data transfer 15 pin DTE/DCE connection and pin allocation

ELECTRICAL: voltage levels on wires, etc.

- e. g. CCITT X.27/V.11:
- electrical features for the symmetrical transfer within the area of data communication

FUNCTIONAL: definition of switching functions; pin allocation (data, control, timing, ground)

- e. g. CCITT X.24:
- list of the switching functions between DTE und DCE in public data networks

PROCEDURAL: rules for using switching functions

- e. g. CCITT X.21:
- protocol between DTE and DCE for synchronized data transfer in public data networks

Mechanical

Electrical

CCITT V.11 / X.27 (EIA RS -422-A)

e.g. .. "

- designed for IC Technology
- balanced generator
- differential receiver
- two conductors per circuit
- signal rate up to 10 Mbps
- distance: 1000m (at appr. 100 Kbps) to10m (at 10Mbps)
- considerably reduced crosstalk
- interoperable with V.10 / X.26 ..."

Functional, Procedural

Example RS-232-C, functional specification describes

- connection between pins
 - e.g. "zero modem" computer-computer-connection (Transmit(2) Receive(3))
- meaning of the signals on the lines
 - DTR=1, when the computer is active, DSR=1, modem is active, ...
 - Action/reaction pairs specify the permitted sequence per event
 - e. g. when the computer sends an RTS, the modem responds with a CTS when it is ready to receive data

1.2 Bit Rate and Baud Rate

BAUD RATE:

measure of number of symbols (characters) transmitted per unit of time

- signal speed, number of signal changes per second
 - changes in amplitude, frequency, phase
- each symbol normally consist of a number of bits
 - so the baud rate will only be the same as the bit rate when there is one bit per symbol.

BIT RATE: Number of Bits transferred per Second (bps)

- bit rate may be higher than baud rate ("signal speed")
 - because one signal value may transfer several bits

Example:

Basics

Bandwidth of a channel: $B = f_{max} - f_{min}$ f_{max} , f_{min} : maximum resp. minimum frequency

Examples:

• phone: min. 3000 Hz

• Coax: approx. 300 MHz

• fiber: approx. 108 MHz (visable light)

Nyquist theorem (noise free channel)

- max. bitrate = $2 H \cdot \log_2 V$ bps
 - H... signal bandwidth (low pass filter)
 - V... discrete levels

Example:

3000 Hz channel, binary signal (V=2):

max. bitrate = 6000 bps

Basics

Shannon theorem (noisy channel) max bitrate = $H \cdot \log_2 (1 + S/N)$

- H... signal bandwidth (low pass filter)
- S/N . . . Signal to Noise ratio
- 10 log₁₀ S/N decibels

Example:

- 3000 Hz channel,
- S/N = 1 000 (30 dB)
 - max. bitrate = 30 000 bps

independent of number of levels!

This is an upper bound!

real systems rarely achieve it

1.3 Operating Modes

Transfer directions (temporal parallelism)

- simplex communication:
 - data is always transferred into one direction only
- (half-duplex) semi-duplex communication
 - data is transferred into both directions
 - but never simultaneously
- full-duplex communication
 - data may flow simultaneously in both directions

Serial and parallel transmission

- parallel:
 - signals are transmitted simultaneously over several channels
- serial:
 - signals are transmitted sequentially over one channel

Operating Modes: Synchronous Transmission

Definition

- the point in time at which the bit exchange occurs is pre-defined by a regular clock pulse (requires synchronization)
- whereby the clock pulse lasts as long as the transmission of a series of multiple characters takes

Implementation

- receiving clock pulse
 - on a separate line (e. g. X.21) or
 - gained from the signal
- bit synchronous or frame synchronous (frames in fact on data link level)
 - special characters

```
e. g.
SOH Start of Header
STX Start of Text
ETX End of Text
```

Operating Modes: Asynchronous Transmission

Definition

- clock pulse fixed for the duration of a signal
- termination marked by
 - Stop signal (bit) or
 - number of bits per signal

Implementation

- simple:
 - sender and receiver generate the clock pulse independently from each other
- frame size usually approx. 9 bit (of this approx. 70% reference data) example:

```
7 Bit ASCII reference data
1 Parity Bit (odd, even, or unused)
1 Start-Bit
1 Stop-Bit
```

- example: RS-232-C
 - UART (universal asynchronous receiver and transmitter) IC module
 - often between
 - · computer and printer or
 - computer and modem

1.4 Guided Transmission Media: Twisted Pair and Coax

UTP: unshielded twisted pair

Coaxial cable

Fiber Optics

Three examples of a light ray from inside a silica fiber impinging on the air/ silica boundary at different angles Light trapped by total internal reflection

Types:

- Multimode
 - several rays with different angles ('modes')
- Monomode
 - fiber diameter reduced to few wavelengths of light
 - light can propagate in straight line

2 Analog and Digital Information Encoding and Transmission

Variants and examples:

		Transmission					
		analog	digital				
Infc	analog (voice, music)	"old" telephone system (POTS) → AM, FM	ISDN (voice service) Internet Audio → PCM, DM,				
Information Coding	digital (texts, images)	modem (modulator demodulator) at analog telephone connection Radio Data System RDS → PAM, PPM, PFM, and V.21, V.22 bis,, V.32 bis, V.34.	traditional computer networks and applications ISDN (data service) → Manchester Encoding,				

Digital Information – Digital Transmission

Digital information at end system

• usually TTL-Logic ("1" : 3V, "0" : 0V)

Digital transmission

- sender/receiver synchronization
- signal levels around 0V (lower power)
- → Conversion

Coding techniques

- binary encoding, nonreturn to zero-level (NRZ-L)
 - 1: high level
 - 0: low level
- return to zero (RZ)
 - 1: clock pulse (double frequency) during interval
 - 0: low level
- . . .
- Manchester Encoding
- Differential Manchester Encoding

•

Binary Encoding

Binary encoding (Nonreturn to zero):

- "1": voltage on high
- "0": voltage on low
- i.e.
 - + simple, cheap
 - + good utilization of the bandwidth (1 bit per Baud)
 - no "self-clocking" feature

Manchester Encoding

Bit interval is divided into two partial intervals: I1, I2

- "1": I1: high, I2: low
- "0": I1: low, I2: high
- + good "self-clocking" feature
- 0,5 bit per Baud

Application: 802.3 (CSMA/CD)

Differential Manchester Encoding

Differential Manchester Encoding:

- bit interval divided into two partial intervals:
 - "1": no change in the level at the beginning of the interval
 - "0": change in the level
 - + good "self-clocking" feature
 - + low susceptibility to noise because only the signal's polarity is recorded. Absolute values are irrelevant.
 - 0,5 bit per Baud
 - complex

1

3 Multiplexing Techniques

The cost for implementing and maintaining either a narrowband or a wideband cable are almost the same

multiplexing many conversations onto one channel

Two procedural classes:

FDM (FREQUENCY DIVISION MULTIPLEXING)

TDM (TIME DIVISION MULTIPLEXING)

```
Time Division Multiplexing (TDM)

Bandwidth Channel 2 Channel 3 Ch
```

Frequency Multiplexing

Principle:

- frequency band is split between the users
- each user is allocated one frequency band

Application:

• example: multiplexing of voice telephone channels: phone, cable-tv

- filters limit voice channel to 3 000 Hz bandwidth
- each voice channel receives 4 000 Hz bandwidth
 - 3 000 Hz voice channel
 - 2 x 500 Hz gap (guard band)
- despite guard band adjacent channels overlap, noise

Time Division Multiplexing

Principle:

- user receives a time slot
- during this time slot he has the full bandwidth

Application:

- multiplexing of end systems, but also
- in transmission systems

 $\sum d_i(t) = d_0(t)$

LT: Link Trailer, LH: Link Header, d_n(t): Fixed, predetermined slots for each device, TDM Control: Identification of specific TDM controls (may not exist on some TDMs)

Multiplexer and Concentrator

MULTIPLEXER:

- INPUT from various links in predefined order
- OUTPUT at one single link in the same order

$$\sum_{i=1}^{n} C_{i}^{IN} = C^{OUT}$$

Disadvantage: waste of time slots if station is not sending

Multiplexer and Concentrator

Multiplexer:

Concentrator:

Concentrator:

- INPUT from several links
- OUTPUT at one single link
- no fixed slot allocation, instead sending of (station addresses, data)

PROBLEM: All stations use maximum speed for sending

"Solution": internal buffers